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Corneal ulcer is a common leading cause of corneal blindness. It is difficult to
accurately segment corneal ulcers due to the following problems: large differences in
the pathological shapes between point-flaky and flaky corneal ulcers, blurred boundary,
noise interference, and the lack of sufficient slit-lamp images with ground truth.
To address these problems, in this paper, we proposed a novel semi-supervised
multi-scale self-transformer generative adversarial network (Semi-MsST-GAN) that can
leverage unlabeled images to improve the performance of corneal ulcer segmentation
in fluorescein staining of slit-lamp images. Firstly, to improve the performance of
segmenting the corneal ulcer regions with complex pathological features, we proposed
a novel multi-scale self-transformer network (MsSTNet) as the MsST-GAN generator,
which can guide the model to aggregate the low-level weak semantic features with
the high-level strong semantic information and adaptively learn the spatial correlation in
feature maps. Then, to further improve the segmentation performance by leveraging
unlabeled data, the semi-supervised approach based on the proposed MsST-GAN
was explored to solve the problem of the lack of slit-lamp images with corresponding
ground truth. The proposed Semi-MsST-GAN was comprehensively evaluated on
the public SUSTech-SYSU dataset, which contains 354 labeled and 358 unlabeled
fluorescein staining slit-lamp images. The results showed that, compared with other
state-of-the-art methods, our proposed method achieves better performance with
comparable efficiency.

Keywords: corneal ulcer, GAN, slit-lamp image, semi-supervision, deep learning

INTRODUCTION

The cornea is a transparent membrane located at the front of the eyeball and is directly exposed
to the air. Therefore, it is more likely to be infected with bacteria, resulting in several frequently
occurring ophthalmic symptoms such as corneal ulcer. Corneal ulcer is an inflammatory or, more
seriously, infective condition of the cornea involving disruption of its stromal–epithelial layers
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(Bron et al., 2007; Chen and Yuan, 2010). Late or inappropriate
treatment may induce irreversible damages to vision acuity
(Cohen et al., 1987; Diamond et al., 1999).

Fluorescein staining is the most widely used diagnostic
technology in optometry and ophthalmology to assess the
integrity of the ocular surface, particularly the integrity of the
cornea (Morgan and Carole, 2009; Zhang et al., 2018). With the
development of staining techniques, doctors can quantitatively
evaluate the size and severity of corneal ulcers by fluorescein
staining of slit-lamp images.

Accurate segmentation of the ulcer region is essential for
assessing the severity of corneal ulcer and formulating a
treatment plan. As shown in Figure 1, corneal ulcer can be
classified into point-like corneal ulcer, point-flaky mixed corneal
ulcer, and flaky corneal ulcer according to the pathological
characteristics and distribution. Although the ulcer region can
be marked manually by experienced ophthalmologists via some
professional software, this task is time-consuming and subjective.
Therefore, it is significant to explore a method that can
automatically and accurately segment the corneal ulcer area.

There are some segmentation methods (Pritchard et al., 2003;
Wolffsohn and Purslow, 2003; Peterson and Wolffsohn, 2009)
designed for separate point-like corneal ulcers rather than for the
point-flaky or flaky types. Later, methods for the segmentation
of corneal ulcers with more complex shapes were proposed and
achieved good results (Chun et al., 2014; Sun et al., 2017; Deng
et al., 2018a,b; Liu et al., 2019). Chun et al. (2014) proposed an
objective digital image analysis system to evaluate the corneal
staining using RGB (red–green–blue) and the hue–saturation–
value (HSV) technique with 100 images. Deng et al. (2018a)
presented an automatic ulcer segmentation method by utilizing
k-means clustering followed by morphological operations and
region growing. Then, in Deng et al. (2018b), a simple
linear iterative clustering (SLIC) super-pixel-based pipeline was
proposed for automatic flaky corneal ulcer area extraction with
150 images. Liu et al. (2019) segmented the ulcer area by
employing a joint method of Otsu and Gaussian mixture model
(GMM) with 150 images. Sun et al. (2017) proposed a patch-
based deep convolutional neural network (CNN) for corneal
ulcer segmentation with 48 images. The methods mentioned
above are traditional algorithms mostly based on around 100
images and are only designed for certain types of corneal ulcer,
therefore not suitable for all types of segmentation.

Recently, several CNNs have been proposed for medical image
segmentation, such as UNet (Ronneberger et al., 2015), CE-Net
(Gu et al., 2019), Att-UNet (Oktay et al., 2018), and CPFNet
(Feng et al., 2020). Most of them are based on the encoder–
decoder architecture (Ronneberger et al., 2015) due to its good
performance. The encoder can extract the context information
and reduce the spatial dimension of feature maps. The decoder
can recover the spatial dimension and details of the targets. The
skip connections help to recover the full spatial resolution at
the network output, making the network suitable for semantic
segmentation (Zhou et al., 2018). However, the original skip
connections in the U-shaped network will introduce irrelevant
clutters and have semantic gaps due to the mismatch of the
receptive fields (Feng et al., 2020). To improve the performance

of the original U-Net, methods such as attention U-Net (Att-
UNet) (Oktay et al., 2018) and CPFNet (Feng et al., 2020)
have introduced an attention mechanism, whose core idea is
to change the global focus to key and local region focus. The
attention mechanism tries to focus the attention of the network
on the relationship of the channels, gather spatial information
to focus on the correlated features, and suppress the irrelevant
regions in the feature map. It is beneficial to utilize attention
mechanism to capture more rich details of objects instead of
the direct concatenation of feature maps from the encoder and
decoder. Although these CNN-based methods have achieved
good performance (Ronneberger et al., 2015; Oktay et al., 2018;
Gu et al., 2019; Feng et al., 2020), a few CNN-based methods
have been proposed for corneal ulcer segmentation in slit-lamp
images. There are still two problems that need to be solved in
order to improve the accuracy of corneal ulcer segmentation in
slit-lamp images: (1) the interferences caused by complicated
pathological features of corneal ulcers in slit-lamp images, such
as the large differences in the pathological shapes between point-
like, point-flaky, and flaky corneal ulcers, blurred boundary, and
noise interference, and (2) how to leverage the large amount of
unlabeled data to further improve the segmentation accuracy. In
this paper, we propose a novel semi-supervised algorithm based
on adversarial learning to solve the current dilemma. Our main
contributions are summarized as follows:

(1) To improve the segmentation performance of the corneal
ulcer regions with complex pathological features, a
novel multi-scale self-transformer network (MsSTNet)
is proposed for corneal ulcer segmentation, which can
improve the ability of the model to capture the global
long-range dependencies of multi-scale features from
different layers.

(2) To leverage unlabeled samples for the further performance
improvement, a novel semi-supervised multi-scale self-
transformer generative adversarial network (Semi-MsST-
GAN) is explored.

(3) Comprehensive experiments based on the SUSTech-
SYSU dataset have been conducted to demonstrate the
effectiveness of our proposed methods. The results show
that, compared with other state-of-the-art algorithms, our
proposed method not only achieves higher segmentation
accuracy but also can leverage unlabeled data to further
improve segmentation performance.

METHODS

We adopted the adversarial framework as the architecture of our
proposed method, which contains a generator network and a
discriminator referred to Mirza and Osindero (2014) and Isola
et al. (2017). The following provides a detailed description and
functional interpretation of the proposed method.

Semi-MsST-GAN
In recent years, generative adversarial networks (GANs)
(Goodfellow et al., 2014) and their variations (Chen et al., 2016;
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FIGURE 1 | Comparison of the three types of corneal ulcers, with the top row representing point-like corneal ulcers, the middle row representing point-flaky mixed
corneal ulcers, and the bottom row representing flaky corneal ulcers.

Ma et al., 2018; Wang T.-C. et al., 2018; Jiang et al., 2019) have
been widely used in several domains (Li and Wand, 2016; Pathak
et al., 2016; Salimans et al., 2016; Vondrick et al., 2016; Wu
et al., 2016; Zhu et al., 2016, 2017; Zha et al., 2019), especially in
image processing applications, such as image generation (Zha
et al., 2019), image editing (Zhu et al., 2016), representation
learning (Salimans et al., 2016), image inpainting (Pathak et al.,
2016), style transfer (Li and Wand, 2016), and image-to-image
translation (Zhu et al., 2017), with significant performances.
Different from the original GAN that generates images based
on random noise, conditional GAN (cGAN) generates images
based on specified conditional inputs (Mirza and Osindero,
2014). Moreover, the GAN architecture is also widely used
in semi-supervision-based methods (Sricharan et al., 2017;
Hung et al., 2018; Wang et al., 2021). Therefore, to improve
the ability of the model to learn the complex pathological
features and leverage unlabeled data in order to further improve
the segmentation performance, we proposed a novel semi-
supervised MsST-GAN based on cGAN architecture for corneal
ulcer segmentation.

As shown in Figure 2, similar to general GAN methods (Mirza
and Osindero, 2014; Isola et al., 2017), our proposed Semi-
MsST-GAN mainly consists of two networks of generator and
discriminator. The generator network aims to accurately segment
the region of the lesion to confuse the discriminator, while the
discriminator aims to discriminate whether its input paired is
real or fake. It can be seen from Figure 2 that MsSTNet is
employed as the generator of MsST-GAN. The Semi-MsST-GAN
is trained based on the data composed of labeled images and
unlabeled images:

(1) For the data with ground truth: MsSTNet is trained
to segment the corneal ulcer region as close to the

corresponding ground truth as possible based on the
guidance of objective function of Ljoint. Then, the
segmentation result of MsSTNet is concatenated with the
original data (fake pair) and fed into the discriminator.
At the same time, the ground truth is concatenated with
the original data (real pair). They are all fed into the
discriminator to discriminate whether the input pair is real
or fake based on the objective function of LD.

(2) For the data without ground truth: MsSTNet is trained
to segment the corneal ulcer region to confuse the
discriminator to predict fake results based on the objective
function of Ladv. Then, the segmentation result of MsSTNet
is concatenated with the original data and fed into the
discriminator. The discriminator is trained to discriminate
whether the input pair is real or fake based on the objective
function of LD.

It should be noted that the optimization of Semi-MsST-GAN
is an end-to-end training process based on mixed data composed
of labeled data and unlabeled data.

Multi-Scale Self-Transformer Network
Recently, researchers have proposed several variant networks
based on the encoder–decoder architecture for semantic
segmentation tasks, such as SE-Net (Hu et al., 2018), CE-Net
(Gu et al., 2019), Attention U-Net (Oktay et al., 2018), U-Net++
(Zhou et al., 2018), and CPFNet (Feng et al., 2020). Most of
them introduced an attention mechanism to capture more rich
details of objects instead of the direct concatenation of feature
maps from the encoder and decoder. However, such attention-
based feature extraction method still learns feature relationships
in limited receptive fields, which cannot capture the long-range
feature dependencies in the entire feature map.
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FIGURE 2 | Framework of the proposed semi-supervised multi-scale self-transformer generative adversarial network (Semi-MsST-GAN). In the semi-supervised
training process based on labeled and unlabeled images, for the data with ground truth, the multi-scale self-transformer network (MsSTNet) is trained to segment the
corneal ulcer region as close to the corresponding ground truth as possible based on the guidance of the objective function of Ljoint. Then, the segmentation result of
MsSTNet is concatenated with the original data and fed into the discriminator. At the same time, the ground truth is concatenated with the original data. They are all
fed into the discriminator to discriminate whether the input pair is real or fake based on the objective function of LD. For the data without ground truth, MsSTNet is
trained to segment the corneal ulcer region to confuse the discriminator to predict fake results based on the objective function of Ladv. Then, the segmentation result
of MsSTNet is concatenated with the original data and fed into the discriminator. The discriminator is trained to discriminate whether the input pair is real or fake
based on the objective function of LD.

In Lazebnik et al. (2006), Springenberg et al. (2014), He
et al. (2015), and Long et al. (2015), contexts were encoded
in the gradually larger receptive fields, which can model
long-range dependencies. Long-range dependencies play a vital
role in image analysis tasks based on deep neural networks
(Fukushima and Miyake, 1982; LeCun et al., 1989; Yu and
Koltun, 2015). Fukushima and Miyake (1982) and Yu and Koltun
(2015) captured the long-range dependency features contained
in the feature map by constructing a larger receptive field.
LeCun et al. (1989) proposed a novel non-local neural network
based on a self-attention mechanism to capture long-range
dependencies. However, there is still the problem of non-local
spatial interactions that are not cross scales (LeCun et al., 1989;
Wang X. et al., 2018). Thus, these methods cannot capture
the non-local context of objects with different scales (Zhang
et al., 2020), especially for medical image segmentation tasks
with complex pathological features (Chen et al., 2017; Zhao
et al., 2017). Considering the loss of point-flaky mixed corneal
ulcer in high-level feature maps resulting from the continuous
downsampling operation, the feature maps from different
levels were adopted to supplement long-range dependencies.
Therefore, to fully utilize the feature interaction between the
local context and the global context, which contains long-range
dependencies and spatial correlations from different levels, we
developed a novel MsSTNet as the segmentor of MsST-GAN. As
shown in Figure 3, it adopts a pyramid architecture and self-
attention layers to fuse feature maps cross spatial and scales.
Figure 3 also shows that, in MsSTNet, the encoder–decoder

architecture was also employed as our framework, in which the
pre-trained ResNet-18 was adopted as the encoder path and
simple upsampling and deconvolution constituted the decoder
path. Especially, to reduce the semantic gap and avoid irrelevant
clutters, a novel multi-scale self-transformer (MsST) module was
proposed and embedded into the MsSTNet to enhance the ability
of the model to extract multi-scale and multi-semantic features,
which can improve the segmentation performance.

Figure 3 shows that the proposed novel MsST module was
embedded into the top of the encoder path. Firstly, feature maps
from stage 2 (F1), stage 3 (F2), and stage 4 (F3) were fed into a
downsampling normalized module, which consists of a bilinear
downsampling operation, followed by a 3 × 3 convolution
layer to match the features of stage 5 in the channels and
size. Then, the feature maps with different scales and semantic
information were fused by the addition of elements. Finally,
the fused feature maps with rich multi-scale and multi-semantic
information and the feature maps of the top layer with global
feature information were fed into self-attention (often called
scaled-dot attention in natural language processing, NLP), which
has three branches: query, key, and value (Shaw et al., 2018). As
shown in Figure 3, to further extract rich features with complex
pathological characteristics and suppress the interference from
irrelevant features, we employed the fused feature maps with rich
multi-scale and multi-semantic features as the input of branch
query. The feature maps with rich global features, which are from
the encoder’s top layer, were adopted as the input of branch key
and value. In this way, it guides the model to learn salient global
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FIGURE 3 | Overview of the proposed multi-scale self-transformer network (MsSTNet). The original image is fed into the encoder path composed of a pre-trained
ResNet-18 to obtain the high-level features. Then, the feature maps from stages 2, 3, 4, 5 are fed into the MsST module to fuse multi-scale and multi-semantic
information. Subsequently, the features are recovered by the decoder path. Finally, the predicted images are obtained.

features and suppress the interference of unrelated local features.
As can be seen from Figure 3, our proposed MsST module mainly
consists of four steps:

(1) We adopted 1 × 1 convolution to encode the feature
map FA to query (Q) and encode FT to key (K) and value (V),
respectively.

Q = Conv 1× 1 (FA) ∈ RB,C/8,W,H (1)

K = Conv 1× 1 (FT) ∈ RB,C/8,W,H (2)

V = Conv 1× 1 (FT) ∈ RB,C,W,H (3)

(2) Calculate the similarity between query and key to obtain
the non-local spatial feature correlation weight guided by global
information. ◦ represents the pixel-wise multiple, as follows:

Q = Reshape (Q) ∈ RB,C/8,W×H (4)

K = Reshape (K) ∈ RB,C/8,W×H (5)

energy = QT◦K ∈ RB,W×H,W×H (6)

Att = Softmax
(
energy

)
∈ RB,W×H,W×H (7)

3) The attention map Att and the corresponding V were
weighted and summed to obtain the final spatial response FM
with a multi-scale and multi-semantic feature.

FM = Reshape
(
V◦AttT

)
∈ RB,C,W,H (8)

4) Finally, we multiplied FM by a scale parameter, γ, and
performed an element-wise summation operation with the
feature map FT to obtain the final output.

Ffinal = FT + γ × FM ∈ RB,C,W,H (9)

where γ is initialized as 0 and gradually learns to assign more
weight. It can also be seen from Eq. 9 that the final feature map,
Ffinal, is the weighted sum of the multi-scale, multi-semantic, and
strong semantic global features. Therefore, it not only has a global
contextual view but can also selectively aggregate contextual
information with multi-scale and multi-semantic features.

Discriminator
The ordinary GAN discriminator maps the input into a real
number between 0 and 1, which represents the probability that
the input sample is true or fake. It is not suitable for medical
image segmentation, which requires high-resolution and high-
definition details. Therefore, in this paper, the discriminator of
patchGAN (Isola et al., 2017) was employed as the discriminator
of MsST-GAN to solve these problems. It could classify whether
each N × N patch from the input image is real or fake. This
operation encourages the model to pay more attention to the
structure in local patches, which is in favor of modeling high
frequencies. The discriminator performs convolution operations
on the input images, followed by averaging all responses to
provide the ultimate discrimination of the output image. In this
paper, N was set as 70.
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Loss Function
Given an input image X, the segmentor and discriminator were
denoted as MsSTNet and D, respectively. The segmentation
results from MsSTNet were represented as MsSTNet (X). The
input of D was defined as XD, which contains two forms: the
original image combined with the ground truth (XDT) and the
original image combined with the segmentation result (XDF),
representing the pairs as True or Fake.

Loss for Discriminator
The spatial binary cross entropy loss LD, as follows, was adopted
to optimize the discriminator:

LD =
∑

h,w

(
1− y

)
log

(
1− D (MsSTNET (X))h,w

)
+y log

(
D
(
y
)h,w) (10)

where y = 0 if the patch was from MsSTNet prediction and y = 1 if
the patch was from the ground truth. D(MsSTNet(X))h,w denotes
the probability map of MsSTNet(X) at location (h,w), andD(y)h,w
is the probability map of y at location (h,w).

Loss for MsSTNet
To improve the segmentation accuracy of MsSTNet, we proposed
a novel joint loss function to optimize the model, as follows:

Ljoint = LBCE + LDice + LAdv (11)

It can be seen from Eq. 11 that the joint loss function mainly
contains three components: adversarial loss function, LAdv, which
helps the segmentor generate prediction as close to the ground
truth as possible; spatial cross entropy loss function, LBCE, which
was mainly adopted to evaluate the gap between the segmentation
result and the ground truth pixel-wise; and the dice loss, LDice,
which was employed to evaluate the segmentation performance
in images.

LAdv = −
∑

h,w
log

(
D (MsSTNet (X))h,w

)
(12)

LBCE = −
∑

h,w

(
1− y

)
log

(
1− ŷ

)h,w
+ y log

(
ŷ
)

(13)

LDice = 1−
2
(
y ∩ ŷ

)
y ∪ ŷ

(14)

where ŷ denotes the segmentation result of MsSTNet.

Objective Function for Semi-Supervised Learning
In semi-supervised learning, the loss function often contains two
components: supervised loss and unsupervised loss. Supervised
loss was adopted to optimize the model based on the data with
ground truth. Unsupervised loss was employed to evaluate the
segmentation results, optimizing the model to accurately segment
the data without ground truth. In this paper, the supervised and
unsupervised losses were defined as follows:

Lsupervised = Ljoint + LD (15)

Lunsuperivised = LAdv (16)

The semi-supervised loss function was finally defined
as follows:

Lsemi = Lsupervised + Lunsuperivised (17)

DATASET

To evaluate the performance of the proposed method,
comprehensive experiments have been conducted on the
SUSTech-SYSU public slit-lamp fluorescein staining image
dataset (Deng et al., 2020), which was released to develop and
evaluate automatic corneal ulcer segmentation algorithms. As
far as we know, this is the first time the semi-supervised-based
method has been explored for corneal ulcer segmentation
task based on the SUSTech-SYSU dataset. It has 354 point-
flaky mixed and flaky corneal ulcer slit-lamp fluorescein
staining images with ground truth annotated pixel-wise by
ophthalmologists and 358 point-like corneal ulcer images
without ground truth, in which the lesions were too small to
annotate. Each RGB image with a resolution of 2,592 × 1,728
pixels contains only one corneal area, which is located in the
middle of the field of view. In order to achieve a balance between
the computational efficiency and avoid the loss of lesions with
small size, the original images and their ground truths were
resized to 512 × 512 by bilinear interpolation. In order to
fully demonstrate the effectiveness of our proposed method,
the dataset was randomly divided into fourfolds. The data
strategies are listed in Table 1 to train and evaluate all models.
Besides, we also adopted online data augmentation, including
rotations from −10 to 10 degrees, horizontal flipping, vertical
flipping, Gaussian noise addition, and affine transformation
to prevent overfitting and improve the robust ability of
the model.

EXPERIMENTS AND RESULTS

Evaluation Metrics
To fully and fairly evaluate the segmentation performance
of the different methods, four metrics were employed: dice
coefficient (Dsc), Jaccard index (Jac), sensitivity (Sen), and
Pearson’s product-moment correlation coefficient (PPMCC).

TABLE 1 | Experimental data strategies.

Supervision
approach

Data distribution

Supervised All 354 labeled slit-lamp images were randomly divided into
fourfold for cross-validation. Except for the 4th fold, which only
had 84 images, each fold contained 90 slit-lamp images.

Semi-
supervised

All 354 labeled slit-lamp images were randomly divided into
fourfold for cross-validation. Except for the 4th fold, which only
had 84 images, each fold contained 90 slit-lamp images. The
358 unlabeled point-like corneal ulcer images in the
SUSTech-SYSU dataset were mixed with the labeled images to
train the semi-supervised method.
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PPMCC, with a value between −1 and 1, is often adopted
to measure the correlation (linear correlation) between two
variables. The four indicators were calculated as follows:

Dsc =
2× TP

2× TP+ TN+ FP
(18)

Sen =
TP

TP+ FN
(19)

Acc =
TP+ FN

TP+ FP+ FN
(20)

PPMCC =
Cov (X,Y)
σXσY

(21)

where TN, TP, FN, and FP represent true negative, true
positive, false negative, and false positive, respectively. X and Y
denote the segmentation result and corresponding ground truth,
respectively. Cov(.) represents the covariance between X and Y.
σX and σY are the standard deviations of X and Y, respectively.

Implementation Details
The proposed network was performed on the public platform
Pytorch and a Tesla K40 GPU (12 GB). Adam was used as
the optimizer. The initial learning rate was set to 0.0005, and
weight decay was set to 0.0001. The batch size was set to be 4
and epoch was 100.

The segmentation performance of our proposed network
was compared with other excellent networks, such as Attention
U-Net (Oktay et al., 2018), R2U-Net (Alom et al., 2018), CE-
Net (Gu et al., 2019), ResU-Net (He et al., 2016), PSPNet (Zhao
et al., 2017), DeepLabv3+(Chen et al., 2018), U-Net++ (Zhou
et al., 2018), and CPFNet (Feng et al., 2020). Aside from these
CNN-based networks, the proposed network was also compared
with other GANs, such as cGAN (Mirza and Osindero, 2014),
PIX2PIX (Isola et al., 2017), and Cycle GAN (Zhu et al., 2017).
Besides, several semi-supervised methods were also compared,
such as Semi-cGAN, Semi-PIX2PIX, and Semi-Cycle GAN. All
the networks were trained with the same parameters. It should
be noted that all experiments based on supervised learning
adopted the same data processing strategy and loss function of
LBCE + LDice. Moreover, the code for Semi-MsST-GAN will be
released in https://github.com/TingtingWang12/MsST-GAN.

Experimental Results
Based on the data strategy listed in Table 1, we conducted
comprehensive experiments to evaluate the effectiveness of our
proposed MsST-GAN and Semi-MsST-GAN. MsST-GAN was
compared with other CNN-based methods and GAN methods,
with 354 labeled images under the supervised condition.
Then, 358 unlabeled images were introduced to conduct the
semi-supervised strategy. The proposed Semi-MsST-GAN was
compared with Semi-cGAN, Semi-PIX2PIX, and Semi-Cycle
GAN. Besides, we also conducted a series of ablation experiments
to verify the validity of the proposed MsSTNet and loss function.
For convenience, we used UNet (Ronneberger et al., 2015) as
the baseline. The mean and standard deviation values of the
four evaluation metrics and the efficiency for all methods are
listed in Table 2.

It can be seen from Table 2 that both supervised MsSTNet
and MsST-GAN outperformed other state-of-the-art supervised
methods. Cycle GAN achieved the worst results with 82.76% for
Dsc as it tended to model collapse, which may be caused by
corneal ulcers with complex pathological features. Although the
efficiency of our proposed MsST-GAN was slightly lower than
that of the baseline (U-Net), the Dsc and Jac indices of MsST-
GAN were improved by 3.00 and 4.60%, respectively, compared
with U-Net. Moreover, compared with the latest excellent models
such as CE-Net (Gu et al., 2019) and CPFNet (Feng et al., 2020),
which have been adopted for various medical image segmentation
tasks, the Dsc values of MsST-GAN were improved by 1.67
and 0.58%, respectively. Besides, the efficiency of the proposed
method was also improved by 52 and 128% compared to CE-Net
and CPFNet, respectively. These results show that our proposed
method can improve the performance of segmenting corneal
ulcers and satisfy real-time requirements by adopting non-
local convolution and self-attention rather than the traditional
attention mechanism.

The performance of our proposed Semi-MsST-GAN was
further improved by introducing 358 unlabeled images obviously.
Compared with MsST-GAN, the Dsc, Sen, Jac, and PPMCC
of Semi-MsST-GAN were increased from 89.90, 91.03, 82.36,
and 89.89% to 90.93, 91.93, 83.79, and 90.77%, by 1.03, 0.9,
1.43, and 0.88%, respectively. On the contrary, the evaluation
metrics declined when cGAN and PIX2PIX introduced the semi-
supervised strategy. It was mainly caused by the poor ability of
cGAN and PIX2PIX to learn the complex pathological features
of point-like lesions. These results show that the proposed Semi-
MsST-GAN can improve the performance of segmentation by
leveraging unlabeled images. Three examples of segmentation
results with different methods are shown in Figure 4, where
yellow represents the correctly segmented region while red
and blue are the results of false-positive and false-negative
segmentation, respectively. It can be seen from Figure 4 that
our proposed method achieved the best segmentation results.
The false-positive and false-negative segmentation results of
the proposed Semi-MsST-GAN were obviously less than those
of other methods. The results of U-Net (Ronneberger et al.,
2015), Att-UNet (Oktay et al., 2018), CE-Net (Gu et al., 2019),
and PSPNet (Zhao et al., 2017) had the problem of incorrect
segmentation (shown in the bottom line of Figure 4). Compared
with CE-Net (Gu et al., 2019), PSPNet (Zhao et al., 2017), and
CPFNet (Feng et al., 2020), our proposed method cannot only
accurately segment the lesion with small sizes but also maintain
good regional continuity in segmenting large targets.

Statistical Significance Assessment
We further investigated the statistical significance of the
performance improvement for the proposed MsST-GAN and
Semi-MsST-GAN using the paired t-test. The p-values are listed
in Tables 3, 4, respectively. To avoid confusion, we renamed
MsST-GAN as “MsSTGAN” and Semi-MsST-GAN as “Semi
MsSTGAN” in both tables. As shown in Table 3, compared
with the other supervised learning-based methods, the proposed
MsST-GAN achieved significant improvement in terms of the
main evaluation metrics (Dsc and Jac), with p-values less
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TABLE 2 | Evaluation indices for different methods.

Strategy Methods Dsc (%) Sen (%) Jac (%) PPMCC (%) Efficiency (s)

Supervised U-Net (Ronneberger et al., 2015) 87.28 ± 5.38 88.54 ± 3.71 78.74 ± 8.13 87.40 ± 5.23 0.0015

CE-Net (Gu et al., 2019) 88.43 ± 4.85 88.45 ± 4.31 80.38 ± 7.16 88.48 ± 4.53 0.0038

Att-UNet (Oktay et al., 2018) 86.41 ± 6.17 88.05 ± 3.28 77.65 ± 9.05 86.59 ± 6.03 0.0026

R2U-Net (Alom et al., 2018) 80.76 ± 9.26 82.56 ± 5.78 70.50 ± 11.71 81.29 ± 8.67 0.0042

ResU-Net (He et al., 2016) 88.64 ± 4.73 89.02 ± 3.90 80.79 ± 7.33 88.71 ± 4.61 0.0029

PSPNet (Zhao et al., 2017) 89.09 ± 4.64 90.20 ± 3.34 81.28 ± 7.25 89.08 ± 4.56 0.0030

DeepLabv3+ (Chen et al., 2018) 88.29 ± 5.41 89.19 ± 4.90 80.32 ± 8.04 88.33 ± 5.27 0.0057

U-Net++ (Zhou et al., 2018) 86.93 ± 4.66 87.31 ± 2.45 78.24 ± 6.97 87.05 ± 4.59 0.0022

CPFNet (Feng et al., 2020) 89.38 ± 4.30 89.97 ± 2.50 81.76 ± 6.78 89.37 ± 4.23 0.0057

cGAN (Mirza and Osindero, 2014) 85.22 ± 6.82 86.26 ± 3.37 75.25 ± 9.65 85.17 ± 6.51 0.0015

PIX2PIX (Isola et al., 2017) 87.49 ± 5.31 87.81 ± 3.67 78.81 ± 7.92 87.55 ± 5.06 0.0015

Cycle GAN (Zhu et al., 2017) 82.76 ± 9.40 80.35 ± 13.4 72.08 ± 13.28 82.98 ± 8.88 0.0015

Ablation supervised Baseline (Ronneberger et al., 2015) 87.28 ± 5.38 88.54 ± 3.71 78.74 ± 8.13 87.40 ± 5.23 0.0015

UNet+MsST 88.24 ± 4.63 90.03 ± 3.21 80.09 ± 7.20 87.85 ± 5.67 0.0022

UNet+ResNet18 89.11 ± 4.56 90.02 ± 2.95 81.42 ± 7.08 89.11 ± 4.49 0.0021

MsSTNet (UNet+ResNet18+MsST) 89.41 ± 4.36 90.04 ± 3.70 81.85 ± 6.87 89.41 ± 4.29 0.0025

MsST-GAN (Ladv + LD) 89.21 ± 4.62 90.02 ± 2.98 81.36 ± 6.99 89.25 ± 4.37 0.0025

MsST-GAN (Ladv + LD + LBCE) 89.31 ± 4.52 91.23 ± 2.39 81.44 ± 6.89 89.27 ± 4.33 0.0025

MsST-GAN (Ladv + LD + LDice) 89.64 ± 4.58 90.57 ± 2.75 82.11 ± 6.98 89.62 ± 4.38 0.0025

MsST-GAN 89.90 ± 4.31 91.03 ± 1.88 82.36 ± 6.77 89.89 ± 4.12 0.0025

Semi-supervised Semi-cGAN 83.87 ± 10.98 92.07 ± 4.40 73.89 ± 14.52 80.01 ± 18.07 0.0015

Semi-PIX2PIX 87.28 ± 5.54 87.40 ± 4.11 78.58 ± 7.99 87.29 ± 5.34 0.0015

Semi-Cycle GAN 82.35 ± 3.11 83.39 ± 6.87 70.79 ± 4.19 84.75 ± 5.71 0.0015

Semi-MsST-GAN 90.93 ± 4.19 91.93 ± 3.16 83.79 ± 6.72 90.77 ± 4.13 0.0025

Dsc, dice similarity coefficient; Sen, sensitivity; Jac, Jaccard index; PPMCC, Pearson’s product-moment correlation coefficient; cGAN, conditional generative adversarial
network; MsSTNet, multi-scale self-transformer network; MsST-GAN, multi-scale self-transformer GAN. Values in bold indicate the best performance.

FIGURE 4 | Examples of corneal ulcer segmentation. From left to right: original image, U-Net, Attention U-Net, CE-Net, PSPNet, CPFNet, MsST-GAN, and the
proposed method. Yellow represents the correctly segmented region, while red and blue are the results of false-positive segmentation and false-negative
segmentation, respectively.

than 0.05. Table 4 shows the p-values of the Semi-MsST-GAN
compared with MsST-GAN and other CNN-based methods. All
the improvements for the Jac and Dsc values of Semi-MsST-GAN
were statistically significant, with p < 0.05, except for the Dsc
of Cycle GAN (p = 0.052, slightly higher than 0.05). Tables 3, 4
further proved the effectiveness of the proposed MsST-GAN and
Semi-MsST-GAN. Compared with those of the other CNN-based

methods, the segmentation accuracies of both MsST-GAN and
Semi-MsST-GAN have been significantly improved.

Ablation Experiment for MsSTNet
As shown in Table 2, an ablation experiment was conducted to
evaluate the proposed MsST module and the ResNet18 encoder
path. Compared with the baseline model, our proposed MsSTNet
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TABLE 3 | Statistical analysis (p-value) of the proposed MsST-GAN compared
with other convolutional neural network (CNN)-based methods.

Methods Dsc Jac

MsSTGAN–UNet (Ronneberger et al., 2015) 0.025 0.010

MsSTGAN–CENet (Gu et al., 2019) 0.040 0.008

MsSTGAN–Att-UNet (Oktay et al., 2018) 0.003 0.006

MsSTGAN–R2UNet (Alom et al., 2018) 0.038 0.036

MsSTGAN–ResUNet (He et al., 2016) 0.028 0.006

MsSTGAN–PSPNet (Zhao et al., 2017) 0.010 0.001

MsSTGAN–DeepLabv3+ (Chen et al., 2018) 0.014 0.014

MsSTGAN–UNet++ (Zhou et al., 2018) 0.015 0.008

MsSTGAN–CPFNet (Feng et al., 2020) 0.016 0.007

MsSTGAN–cGAN (Mirza and Osindero, 2014) 0.005 0.003

MsSTGAN–PIX2PIX (Isola et al., 2017) 0.005 0.001

MsSTGAN–Cycle GAN (Zhu et al., 2017) 0.049 0.045

Dsc, dice coefficient; Jac, Jaccard index; cGAN, conditional generative adversarial
network; MsST-GAN, multi-scale self-transformer GAN.

TABLE 4 | Statistical analysis (p-value) of the proposed Semi-MsST-GAN
compared with MsST-GAN and other CNN-based methods.

Methods Dsc Jac

Semi MsSTGAN–UNet (Ronneberger et al., 2015) 0.013 0.026

Semi MsSTGAN–CENet (Gu et al., 2019) 0.016 0.017

Semi MsSTGAN–Att-UNet (Oktay et al., 2018) 0.005 0.001

Semi MsSTGAN–R2UNet (Alom et al., 2018) 0.043 0.020

Semi MsSTGAN–ResUNet (He et al., 2016) 0.010 0.017

Semi MsSTGAN–PSPNet (Zhao et al., 2017) 0.001 0.004

Semi MsSTGAN–DeepLabv3+ (Chen et al., 2018) 0.025 0.020

Semi MsSTGAN–UNet++ (Zhou et al., 2018) 0.025 0.026

Semi MsSTGAN–CPFNet (Feng et al., 2020) 0.006 0.010

Semi MsSTGAN–cGAN (Mirza and Osindero, 2014) 0.006 0.006

Semi MsSTGAN–PIX2PIX (Isola et al., 2017) 0.001 0.005

Semi MsSTGAN–Cycle GAN (Zhu et al., 2017) 0.052 0.043

Semi MsSTGAN–MsSTGAN 0.029 0.005

Semi MsSTGAN–Semi-cGAN 0.027 0.023

Semi MsSTGAN–Semi-PIX2PIX 0.001 0.001

Semi MsSTGAN–Semi-Cycle GAN 0.005 0.009

Dsc, dice coefficient; Jac, Jaccard index; cGAN, conditional generative adversarial
network; Semi MsSTGAN, semi-supervised multi-scale self-transformer GAN.

(Baseline+MsST+ResNet18) achieved improvement in terms of
all four evaluation metrics (2.13% for Dsc, 1.5% for Sen, 3.11%
for Jac, and 2.01% for PPMCC). In order to demonstrate the
performance improvement of the proposed MsST module and
the ResNet18 encoder path, we also conducted the experiments
of UNet+MsST and UNet+ResNet18. Compared with that of
the baseline (UNet), the Dsc of UNet+MsST was improved from
87.28 to 88.24% and that of UNet+ResNet18 was improved from
87.28 to 89.11%, which benefits from the fact that the MsST
module can guide the aggregation of low-level weak semantic
information with the high-level strong semantic information
and adaptively learn the spatial correlation in feature maps and
the ResNet18 encoder path can extract feature effectively. These
experimental results proved the effectiveness of the proposed
MsST module and the ResNet18 encoder path.

Ablation Study for Loss Function
We also conducted experiments to demonstrate the effectiveness
of our proposed loss function. It can be seen from Table 2

that, compared with MsST-GAN with only the generative
adversarial loss function LAdv + LD, both MsST-GAN with
LAdv + LD + LBCE and with LAdv + LD + LDice achieved higher
values in all four evaluation metrics. Especially, the average
Dsc of MsST-GAN with LAdv + LD + LBCE increased from
89.21 to 89.31%, while MsST-GAN with LAdv + LD + LDice
increased from 89.21 to 89.64%. These results indicated
that the effectiveness of LBCE works at the pixel level and
LDice works at the image level. Finally, the results of our
proposed loss function Lsupervised were compared with all the
ablation experimental results. It can be seen from Table 2
that MsST-GAN with Lsupervised achieved the best results
in terms of Dsc, Acc, Jac, and PPMCC, except for Sen,
which was slightly lower than that of the MsST-GAN with
LAdv + LD + LBCE. Especially, the Dsc and PPMCC of
MsST-GAN with Lsupervised were improved by 0.77 and 1.23%
and reached 89.90 and 89.89% compared with the results of
LAdv + LD, respectively.

CONCLUSION AND DISCUSSION

In this paper, we proposed a novel Semi-MsST-GAN for
semi-supervised corneal ulcer segmentation, which mainly
focused on solving two problems: (1) the interferences caused
by large pathological differences between point-like, point-
flaky, and flaky corneal ulcers, blurred boundary, and noise
interference, and (2) how to improve the segmentation
accuracy of the network by leveraging the data without
ground truth. This is the first time the semi-supervision-
based method has been introduced into the task of corneal
ulcer segmentation, which achieved good results. Compared
with other state-of-the-art supervised CNN-based methods,
the newly proposed MsST-GAN achieved better segmentation
performance with comparable efficiency. In addition, our
proposed semi-supervision-based method can further improve
the performance by leveraging the data without ground truth.
Comprehensive experiments have been conducted to evaluate
the effectiveness and robustness of the proposed method. The
experimental results showed that, compared with that of the
other state-of-the-art algorithms, the segmentation performance
of our proposed semi-supervision-based method has been
improved obviously.

There is still a limitation in this study. All the compared
algorithms and the proposed semi-supervision-based method
were trained and evaluated based on the limited data from the
SUSTech-SYSU dataset. Although the proposed semi-supervision
method has achieved better performance, we believe that if more
data can be collected, the performance of the proposed method
will be further improved. Therefore, it is one of our future
works to collect more data and further improve the accuracy
of segmentation.
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